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Abstract. We consider the free-rider problem in peer-to-peer file shar-
ing networks such as Napster: that individual users are provided with
no incentive for adding value to the network. We examine the design
implications of the assumption that users will selfishly act to maximize
their own rewards, by constructing a formal game theoretic model of the
system and analyzing equilibria of user strategies under several novel
payment mechanisms. We support and extend this work with results
from experiments with a multi-agent reinforcement learning model.

1 Introduction

Peer-to-peer (P2P) file-sharing systems combine sophisticated searching tech-
niques with decentralized file storage to allow users to download files directly
from one another. The first mainstream P2P system, Napster, attracted public
attention for the P2P paradigm as well as tens of millions of users for itself. Nap-
ster specialized in helping its users to trade music, as do most of its competitors;
P2P networks also allow users to exchange other digital content.

The work of serving files in virtually all current P2P systems is performed for
free by the systems’ users. Since users do not benefit from serving files to others,
many users decline to perform this altruistic act. In fact, two recent studies of the
Gnutella network have found that a very large proportion of its users contribute
nothing to the system [2, 11]. The phenomenon of selfish individuals who opt
out of a voluntary contribution to a group’s common welfare has been widely
studied, and is known as the free-rider problem [8, 12]. The communal sharing
of information goods in “discretionary databases” and the resulting free-rider
problem has also been studied before the advent of P2P systems [13].

This problem is not simply theoretical. Some P2P systems plan to charge
users for access in the near future, both in order to make money for their investors
and to pay any needed royalties. However, a system run for profit may not receive
the level of altruistic ‘donations’ that power a free community. There is therefore
both a need and an opportunity to improve such P2P file-sharing systems by
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using an incentive scheme to increase the proportion of users that share files,
making a greater variety of files available. This would increase the system’s value
to its users and so make it more competitive with other commercial P2P systems.

In the following section, we introduce our formal game theoretic model. Sec-
tion 3 describes the Napster system, which we use as a motivating example
throughout this paper. In sections 4 and 5, we propose two classes of novel pay-
ment mechanisms, analyzing user strategies and the resulting equilibria. Finally
in section 6, we use a multi-agent reinforcement learning model to validate our
analytical results and to explore further properties of our mechanisms.

2 Problem Definition

We turn to a more formal, game theoretic characterization of the problem. (Read-
ers unfamiliar with game theoretic analysis may consult [5, 10].) First, we de-
scribe the game that we use to model the file sharing scenario during one time
period (e.g., one month). n agents participate in the system; we denote them
a1, . . . , an. Each agent ai’s strategy, denoted Si = (σ, δ), consists of two inde-
pendent actions:

1. Sharing: Agents select what proportion of files to share. In our model,
sharing takes three levels: σ0 (none), σ1 (moderate) or σ2 (heavy).

2. Downloading: Each agent must also determine how much to download
from the network in each period. We model downloads with agents choosing
between three levels: δ0 (none), δ1 (moderate) or δ2 (heavy).

2.1 Agent Utility

Agents’ utility functions describe their preferences for different outcomes. The
following factors concern agents:

– Amount Downloaded (AD): Agents get happier the more they download.
– Network Variety (NV): Agents prefer to have more options from which
to select their downloads.

– Disk Space Used (DS): There is a cost to agents associated with allocating
disk space to files to be shared.

– Bandwidth Used (BW): Similarly, there is a cost to agents associated
with uploading files to the network.

– Altruism (AL): Some agents derive utility from the satisfaction of con-
tributing to the network.

– Financial Transfer (FT): Agents may end up paying money for their
usage of the network, or conversely they may end up getting paid.

We assume that agents have quasilinear utility functions; that is, each agent’s
utility functions is a sum of arbitrary functions, each of which maps one of the



above variables to a dollar value. Furthermore, we assume that agents are risk-
neutral, and so agents’ utility for money is linear. We can thus write the equation
for agent ai’s utility function as:

Ui =
[
fAD

i (AD) + fNV
i (NV ) + fAL

i (AL)
] − [

fDS
i (DS) + fBW

i (BW )
] − FT.

Each f function is concerned with a particular variable (e.g., bandwidth used)
and an agent; it describes that agent’s preference for different values of the
variable, in money. There is no f function for the variable FT because this
variable represents an amount of money that is transferred to or from the agent.
Without restricting ourselves to particular f functions, we can make several
observations that justify the signs of the terms above. First, fAD, fNV and fAL

must be monotonically increasing, with minimum value 0, as these variables only
ever contribute positive utility. Likewise, DS and BW only contribute negative
utility, explaining the subtraction of fDS and fBW above. Finally, we make two
assumptions about agents’ relative preferences for different outcomes:

fAD(k) > kβ (1)
fDS(k) + fBW (k) < kβ (2)

First, in inequality (1) we assume that the monetary equivalent of the utility
agents gain from downloading files at level k is more than kβ, for some constant
β. Second, in inequality (2) we assume that the monetary cost to agents of
sharing files at level k and uploading them at level k is less than kβ.

We say that two agents ai and aj have the same type if they have the same
utility function; i.e., if fi = fj for all five f functions. To simplify our game
theoretic analysis in the first part of this paper we often make the assumption
that all agents have the same type. In section 6 we approach the file sharing
problem experimentally; this approach allows us to discuss the convergence of
agent strategies under a wide variety of different agent types.

2.2 Equilibria

As is central to any game theoretic model, we assume that agents are econom-
ically rational: they act to maximize their expected utility, given their beliefs
about the actions that other agents will take and their knowledge about the way
that their payoffs are calculated. We denote the joint strategies of all agents as
Σ = {S1 . . . Sn}. Following the usual definition, we say that Σ is a weak Nash
equilibrium when no agent can gain by changing his strategy, given that all other
agents’ strategies are fixed. Similarly, Σ is a strict Nash equilibrium when every
agent would be strictly worse off if he were to change his strategy, given that all
other agents’ strategies are fixed. Finally, an agent has a dominant strategy if
his best action does not depend on the action of any other agent.



2.3 Assumptions and Observations

In our analysis, we restrict ourselves to file sharing systems that make use of cen-
tralized servers. These servers maintain a database of the files currently available
on the network and connect download requests with available clients.

We assume that the servers are able to determine the identities of files pro-
vided by users, which may be needed both to pay royalties to the appropriate
copyright holders and to detect users who make false claims about the files
they share. File identification may be achieved by a cryptographic watermark-
ing scheme [1, 7]; alternately, users who spoof files could be penalized.

One likely payment model for peer-to-peer systems is a flat rate membership
fee. We do not explicitly consider this option anywhere in the discussion that
follows, as it has no impact on the equilibria that arise from any mechanism (al-
though it can affect agents’ decisions about participation). All the mechanisms
discussed here are compatible with the addition of flat rate pricing; note espe-
cially that the fact that flat fees are unrelated to agents’ behavior implies that
such pricing does not help avoid a free-rider problem.

3 The Napster System

We analyze the Napster system that operated from May 1999 through July 2001,
since it is probably the best-known peer-to-peer application. This is one of the
simplest system that can be represented by our model: regardless of the actions
of agents, Napster imposes no financial transfers. Using the model described in
section 2, we start with an equilibrium analysis that disregards the ‘altruism’
component of agents’ utility functions; we then go on to consider altruism.

Unsurprisingly, Σ = {(σ0, δ2), . . . , (σ0, δ2)} is an equilibrium. As all agents
have the same type, it is enough to analyze the choice made by a single agent.
Assume that agents other that ai follow the strategy S = (σ0, δ2), and consider
agent ai’s best response. Since ai is not altruistic, his utility is strictly decreased
by sharing files; he will thus choose the action σ0 which leaves his utility un-
changed. Downloading will usually increase ai’s utility; when no other agent
shares his utility is zero regardless of how much he intends to download. We
can therefore see that the strategy S = (σ0, δ2) is dominant. If all other agents
choose σ0 then S yields the same (maximal) payoff as (σ0, δ0) and (σ0, δ1); if
any other agent does share then S yields strictly higher revenue than any other
strategy. Because Σ is an equilibrium in dominant strategies, it is unique.

We have identified a unique equilibrium in which nothing is shared and there
is nothing to download. Yet songs were plentiful and actively traded on Napster.
We identify two reasons that users might have contributed. First, Napster offered
its service free of charge and went to great lengths to foster a sense of community
among its users, notably through such features as chat-rooms, a newsletter, and
messaging between users. This may have been sufficient to encourage users to
altruistically contribute resources that cost them very little. Second, Napster of-
fered a (modest) disincentive for non-contribution: by default, the Napster client



shared all songs that an agent downloaded. This could be circumvented, but
only by manually moving songs to another directory after download or explicitly
shutting down the Napster service. Again, because the donation of resources cost
users very little, many users may not have bothered to “opt out”. We represent
both of these incentives through the variable (AL).

In the analysis of this situation, we consider two types of agents. First, altru-
istic agents are those whose reward for altruistic behavior (AL) exceeds its cost
in terms of disk space (DS) and expected bandwidth usage (BW ). We assume
that f functions for these agents are such that they would prefer the action σ2 to
either the action σ1 or σ0 regardless of the value of BW . These agents still gain
utility from downloads: following an argument similar to the one given above,
(σ2, δ2) is a dominant strategy for altruistic agents. The second type of agents are
those for whom the cost of altruistic behavior exceeds its benefit.1 These agents
are essentially the same as those described in the previous section: although they
may receive some payment for altruistic behavior, it will be insufficient to alter
their behavior. They thus have the dominant strategy given above: (σ0, δ2).

This analysis is arguably a description of the way users behaved on the Nap-
ster system. Some proportion of agents were sufficiently altruistic to share files
and did so; other agents were not altruistic and shared nothing. Regardless of
their level of altruism, agents were unrestrained in their downloads. This con-
clusion coheres with the empirical research cited in the introduction claiming
that only a small proportion of Gnutella users share any files. Likewise, it sup-
ports our claim that Napster experienced a free-rider problem: regardless of
the contributions of others, selfish agents had no incentive to share. As with all
such problems, the situation in this case appears somewhat paradoxical, because
all agents would be better off if they all shared (due to the resulting increase
in NV , the variety of files available on the network) than they are under the
unique equilibrium.

We now turn to an examination of several alternative mechanisms that over-
come the free-rider problem through the imposition of financial transfers. In
order to avoid relying on altruism we assume that agents have no altruistic mo-
tivation, and so drop the term fAL(AL) from agents’ utility functions from here
until section 6, in which we present our experimental results. (Of course, all of
our results also hold for agents motivated by altruism.)

4 Micro-Payment Mechanisms

We wish to encourage users to balance what they take from the system with
what they contribute. A natural approach is to charge users for every download
and to reward then for every upload. In this section, we propose and analyze

1 More realistically, we could have assumed three types of agents: those whose level
of altruism led them to take each of the three levels of sharing. We analyzed the
simpler case to simplify the exposition; the analysis of the case with three agent
types proceeds in the obvious way.



a micro-payment mechanism designed according to this principle, as well as a
variant of the basic mechanism.

We begin with a detailed description of our micro-payment mechanism. For
each user the server tracks the number δ of files downloaded, and the number υ
of files uploaded during the time period. The server is aware of all such transfers
since it processes all download requests. Note also that there exist standard
cryptographic protocols (fair exchange, [3]) to ensure that both parties agree on
whether their exchange was aborted or ended successfully. At the end of each
period, each user is charged an amount C = g(δ−υ). We assume that g is linear
with a coefficient β representing the cost/reward per file (e.g., $0.05), and that
the value of this coefficient is such that inequalities (1) and (2) hold. Note that
the global sum of all micro-payments is 0; individual users, however, may make
a profit by uploading more than they download.

Before considering the equilibria that arise under this mechanism, we must
simplify it so that it can be represented in our model.2 Let σ−i be the total
number of units shared by agents other than ai, and δ−i be the total number
of units downloaded by agents other than ai. If agent ai chooses the action3

(σs, δd) then we express the expected value of FT (ai’s expected payment to the
system) as

E[FT ] = β

(
d− δ−i s

n−2
n−1σ

−i + s

)
. (3)

This reflects the assumption that the central server matches downloaders uni-
formly at random with shared units, with the constraint that no agent will
download from himself. Note that β is the coefficient representing the cost per
net unit downloaded.

Proposition 1. Σ = {(σ2, δ2), . . . , (σ2, δ2)} is a unique, strict equilibrium.

Sketch of proof. Inequality (1) states that fAD(k) > kβ. Therefore, agents
have an incentive to download as much as possible—their marginal profit per
file is reduced, as compared to the case discussed in section 3, but it remains
positive. Thus δ2 dominates δ1 and δ0. If all agents other than ai follow the
strategy S = (σ2, δ2), and ai follows the strategy Si = (σs, δ2), ai can cal-
culate his expected utility for the different values of s: he will have E[FT ] =
β

(
2− 2(n− 1) s

2n−4+s

)
. Given our assumption about the cost of uploading a

file, ai will strictly prefer the strategy Si = (σ2, δ2); thus Σ is a strict equilib-
rium. Now we show uniqueness of the equilibrium. Note that it is dominant for
all agents to choose δ2, as described above. Thus δ−i is 2n − 2 in all equilibria
2 Although the following analysis makes explicit use of the fact that there are only

three levels of sharing and of downloading possible, this restriction has been made
only for ease of exposition; a similar (albeit more complicated) proof exists for any
number of levels of sharing and downloading.

3 To simplify the exposition we assume that σs denotes sharing s units, and likewise
δd denotes downloading d units. This assumption is not needed for our results.



for all i. Inequality (2) states that fDS(k) + fBW (k) < kβ: sharing is worth-
while for an agent if every unit of sharing yields at least one unit of uploading
on expectation. Substituting s = 2 into the expression for expected uploading
from equation (3), we find that it is thus worthwhile for an agent to choose the
action σ2 when 2(n− 1) 2

n−2
n−1 σ−i+2

≥ 2. Rearranging, we find that σ2 is the most

profitable strategy as long as σ−i ≤ 2(n− 1). This condition always holds since
there are n− 1 agents other than i and each agent can only share up to 2 units;
hence Σ is unique. ��

Note that the same analysis does not suffice for the case of risk-averse agents.
The problem is that agents directly control their number of downloads, but only
indirectly control their number of uploads through the number of files shared.
Depending on the nature and degree of agents’ risk aversion and their particular
utility functions, they may prefer to reduce their downloads to reduce their
worst-case payments to the network. Since the behavior of risk-averse agents
depends so heavily on the particular assumptions we make about them we do
not give a formal analysis here; however, we return to this issue in section 6.

4.1 Quantized Micro-Payment Mechanisms

Empirical evidence suggests that users strongly dislike micro-payments: having
to decide before each download if a file is worth a few cents imposes mental
decision costs [9]. Users often prefer flat pricing plans, even when such mecha-
nisms may increase their expected costs. To address this problem we introduce a
quantized micro-payment mechanism where users pay for downloads in blocks of
b files, where b is a fixed parameter. At the end of a time period, the number of
files downloaded by a user is rounded up to the next multiple of b, and the user
is charged for the number of blocks used. The pricing mechanism for serving files
is unchanged. Note that when b = 1 we return to the original micro-payment
mechanism, while we approach a purely flat-rate pricing plan as b grows. In prac-
tice, we consider values of b on the order of the number of files that an average
user would download per time period.

We do not present an analysis of this class of mechanisms, for two reasons.
First, in the abstract these quantized mechanisms are the same as general micro-
payment schemes, except that it is irrational for agents to download a number
of files that is not an even multiple of b (unless of course an agent has reached
the maximum number of files that he desires). The key advantage of this class of
mechanisms is that agents are spared the mental decision costs associated with
per-download pricing; since we do not explicitly include this cost in agents’ utility
functions, the elimination of this cost does not affect the analysis. Second, this
class of mechanisms does not fit easily into our simplistic model for user actions:
as we allow only three levels of downloading, it is unclear what to quantize. From
the analysis in section 4 it is easy to see that if we charge agents the same for
δ1 as for δ2 the original equilibrium is preserved: agents will simply be provided
with additional incentive for taking the actions that they would take anyway.

There are, however, some interesting practical issues arising from this class
of micro-payment mechanisms. First we expose a way in which agents could gain



through collusion, and present two possible remedies. We also consider problems
arising from the trading of rare files and suggest one solution.

First we examine an important way in which this mechanism could be at-
tacked. Quantized micro-payment mechanisms have the property that after one
file has been downloaded, the marginal cost of downloading the remaining b− 1
files belonging to the same block is zero. Towards the end of a payment period,
users may take advantage of zero-marginal-cost downloads left in their account
to download files from friends, in order to cause these friends to receive the pay-
ment for serving these files. A coalition of users could agree to download excess
files from each other and share the profit. The cost to the server is proportional
to the difference between the number of files in a block and the average num-
ber of files actually desired by agents. However, this collusion can only reduce
profits back to the case of simple micro-payments discussed above, where every
download corresponds to an upload credited to another agent.

We can modify the quantized payment mechanism so that it is harder for
users to direct their zero-marginal-cost downloads to other specific users. This
makes it harder for a coalition to generate money for itself: if a user has no
control over who is making a profit out of his downloads, this attack becomes
less profitable. We could modify our mechanism in one of two ways. First, the
server can reply to each download request with a list of users serving files that
match the request, but hide the identities of all the users. A user can choose to
download from any of the locations listed, but cannot specifically single out his
friends. Second, the server can reply to each download request with a random
subset of all the users serving files that match the request. In this case user
identities do not need to be hidden.

Observe that these solutions only make it less efficient to direct zero-marginal-
cost downloads to friends, but by no means make it impossible. Furthermore,
these solutions are less and less effective as the number of users sharing a given
file decreases, because a user who stores files that are sufficiently rare will receive
a large fraction of all the download requests for these files. Thus we propose that
rare files (file for which the number of copies available falls below a threshold) be
treated differently from files that are more frequent. We cannot simply refuse to
credit users who serve rare files, because this would create a strong disincentive
for introducing new files into the system. Instead, the central server can give
users no credit for serving rare files, but keep track of all the exchanges of rare
files. If a file exceeds the threshold of frequency and becomes sufficiently popular,
the users who shared it while it was still rare can be credited retroactively.

5 Rewards for Sharing

Previously, we focused on influencing users’ consumption by penalizing down-
loads and rewarding uploads. We take a different approach here: we continue to
penalize downloads, but we now consider rewarding agents in proportion to the
amount of material they share rather than the number of uploads they provide.



The mechanism we consider makes use of an internal currency, “points.”4

Agents are allowed to buy points either with money or with contributions to the
network, but they are not allowed to convert points back into money. Since agents
cannot “cash out” their points, they might be allowed to maintain a balance
from one time period to the next. We do not consider such a rolling balance
since we model a single time period; furthermore, in a repeated equilibrium
agents would have no incentive for accumulating more points than they spend.5

Agents’ payment for sharing is
∫
M(t) dt, whereM(t) is a measure of the amount

of data made available for download at time t and the integral is taken over the
whole time period. Downloading a file costs cm points, where m is a measure of
the file’s size and c is a constant. Intuitively, c represents the number of hours
one file must be shared in order for the cost of one download to be waived.

As above, we must simplify this mechanism in order to analyze it according
to our game theoretic model. One point costs β, where β is set to a value such
that inequalities (1) and (2) hold. Furthermore, assume that all files have the
same size and that agents always share files for the same amount of time (one
time period). Each level of sharing in one time period earns one point (e.g., σ2

is worth two points). We take c = 1, so each level of downloading costs one
point. Downloaded files are not shared in the same time period as they were
downloaded. As above, we assume that downloaders are matched uniformly at
random with shared units, and that no agent may download from himself. Thus,
if ai shares at level s then his expected number of uploads, υi, is:

E[υi] = δ−i s
n−2
n−1σ

−i + s
. (4)

Proposition 2. Σ = {(σ2, δ2), . . . , (σ2, δ2)} is a strict equilibrium.

Sketch of proof. Consider n− 1 agents playing the strategy S = (σ2, δ2), and an
agent ai who must determine his best response. From inequality (1), fAD(k) >
kβ, δ2 dominates δ1 and δ0. Thus ai will play S = (σs, δ2) and must choose a
value for s. If ai plays σ0, σ1 or σ2 his expected number of uploads (given the
other agents’ strategies) will be 0, just under 1 or 2 respectively, and thus his
expected financial transfer to the system will be 2β, slightly more than β or 0.
Inequality (2), fBW (k) + fDS(k) < kβ, tells us that agents prefer to share at
level k and upload at level k than to pay the system for k points. Since sharing
at level 2 leads to uploading at level 2 on expectation, given the other agents’
strategies, ai’s expected utility is maximized by the action σ2. Therefore Σ is a
strict equilibrium. ��

However, Σ is not a unique equilibrium. Indeed, point-based schemes have
the drawback that they can give rise to a degenerate equilibrium in which all

4 Similar ideas have been used by a variety of web services, e.g. www.mojonation.net.
5 Agents might be encouraged to accumulate points if high balances were rewarded

with faster downloads, early access to popular files or other privileges. However, as
this intriguing possibility depends heavily on agents’ particular utility functions as
well as on details about the file sharing system, we do not pursue it further here.



agents download at the highest level and share nothing at all. This can be proven
in several ways; we present the simplest proof, which requires the assumption
that points have no value if not redeemed to pay for downloads.

Proposition 3. Σ = {(σ0, δ2), . . . , (σ0, δ2)} is a strict equilibrium.

Sketch of proof. Consider n − 1 agents playing the strategy S = (σ0, δ2), and
an agent ai who must determine his best response. As above, δ2 is dominant
by the first assumption. Thus ai who will play S = (σs, δ2) and must choose a
value for s. Since all other agents play σ0, there exist no files to download. Thus
gaining points will yield no utility for ai, by the assumption in the preamble.
Furthermore, since all other agents play δ2, ai will be made to serve files for all
other agents’ download requests, bringing him negative utility. He is therefore
best off following strategy S, and so Σ is a strict equilibrium. ��

This analysis leaves it unclear what equilibrium will be reached in play. We
attempt to provide some answers in our experimental section.

We now consider more practical issues arising from this mechanism. First we
consider agents’ opportunities for collusion and for other undesirable exploitation
of the system, and discuss remedies.

Unlike quantized micro-payments, this mechanism does not interfere with
download patterns. Instead it always gives the right incentives for consumption,
since there is no way for colluding users to make money by downloading from
each other. However, this mechanism alters agents’ incentives for sharing files.
The key problem is that agents have negative utility for the consumption of
bandwidth, which only occurs when shared files are actually downloaded. In
order to conserve bandwidth, agents may make their collections available at
low-usage times, or alternately offer unpopular files. This may reduce the overall
value of the network. A possible remedy is to offer distributors different rewards
based on expected download demand. The formula to reward distributors thus
becomes

∫
M(t)λ(t) dt, where λ(t) is a scaling factor proportional to expected

demand. This ensures that the files are available at the right times. The problem
of users preferring to share unpopular files can also be addressed through the
introduction of a similar coefficient.

Another challenge is that agents cannot be expected to make (and honor)
a commitment to share a file for hours into the future. It is much more likely
that agents will start and stop sharing unpredictably, sharing only when their
computer is idle. A mechanism that accommodates such behavior is likely to be
more useful; however, this accommodation must be balanced by ensuring that
agents are not able to cheat by suddenly claiming to lose their idle status as
soon as they receive an upload request.

6 Experiments

The previous sections analyzed the existence of equilibria for all our mechanisms
under simplifying assumptions. Here we test our mechanisms in simulations that
more accurately reflect the real world. We enrich our theoretical model by intro-
ducing different types of files and agents, and by considering risk-averse agents.



6.1 Experimental Setup

We extend upon our theoretical model in two ways. First, we consider action
spaces for agents more fine-grained than the three levels of downloading and
sharing discussed so far. Second, we consider files of several kinds and agents
of several types. Recall that agents with different types have different utility
functions; in our experiments agents differ according to their (fixed) preferences
for different kinds of files. Agent utility functions differ as follows:

– Altruism: f(AL) = ρAL where ρ is drawn uniformly from [ρmin, ρmax].
– Disk space: the function f(DS) is set to emulate an agent with maximal
storage space d, where d is chosen uniformly from [dmin, dmax].

– File type preferences: the term f(AD) is decomposed into µ
∑

i fi(ADi),
where each i represents a different kind of file. Agents’ preferences for each
kind of file are reflected by different fi functions. The factor µ is chosen
uniformly at random in [µmin, µmax] for each agent.

In the simulation of micro-payment mechanisms, our agents are stateless
(they do not keep track of the amount of money they spend or make). In the
simulation of point-based mechanisms, we define states according to the number
of points accumulated by an agent. Points have no intrinsic value to agents, but
an agent who runs out of points must purchase more with money.

All the other parameters of our mechanisms are fixed and equal for all agents.
We model agents’ utility for money as U(x) = A ln(1 + x

A ). As A tends to in-
finity, U becomes linear; this allows us to observe changes as agents go from
risk-aversion to risk-neutrality. This model of risk aversion is supported by ex-
perimental evidence; see, e.g., [6].

6.2 Learning Algorithm

We take an approach similar to that of fictitious play [4] to model the behavior
of agents. Agents behave as if other agents’ strategies were fixed (i.e., as though
other agents do not act strategically), and make a best response based on their
observations of other agents’ actions. Although agent behavior is not strategic in
this model, strategy convergence corresponds to a Nash equilibrium. This is be-
cause convergence corresponds to the situation where each agent’s best response
is to maintain his strategy, given the assumption that all other agents are fixed
in their strategies. An agent could attempt to learn either the joint distribution
of other agents’ strategies, as in a fictitious play model, or the expected payoffs
associated with its own strategies. In a sufficiently symmetric and regular world
populated by sufficiently many agents, the joint distribution can safely be ne-
glected. As P2P systems typically involve very large numbers of agents, agents
in our model attempt to learn the payoffs associated with their own strategy,
without modelling other agents.

Agents use the temporal difference (TD) Q-learning algorithm to learn these
best responses. This algorithm learns the expected utilities of (state,action)-
pairs (called Q-values). The best response is the action that gives the highest



expected payoff. The Q-learning algorithm assumes that the environment does
not evolve over time, but decay enables agents to also do well in a slowly changing
environment. We use the standard update equation for TD Q-learning,Q(a, s)←
(1 − α)Q(a, s) + α(P (a, s) + c · maxa′ Q(a′, s′)), where a is the action that the
agent took, s is the current state, s′ is the new state and P (a, s) is the payoff of
the current round (both are chosen probabilistically by the model as a function
of other agents’ behavior). The decay 0 < α < 1 and the future income discount
0 < c < 1 are fixed.

6.3 Experimental Results

First, our simulations confirm the existence of equilibria for the micro-payment
and point-based mechanisms in the richer setting described above. These equi-
libria generalize those described in our analysis, giving evidence that our exper-
imental assumptions are reasonable. Fig. 1 shows strategy convergence:

Figure 1: Strategy convergence
(logarithmic scale).
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Second, we demonstrate that our model is complex enough to exhibit non-
trivial effects. Fig. 2 shows the behavior of non-altruistic agents in the presence
of altruistic agents under the point-based mechanism. As the proportion of al-
truistic agents increases from 0 to 1, non-altruistic agents discover that they can
download more and therefore have to share more to compensate for the point cost
of their downloads. Third, we tested the robustness of our simulations. Overall,
we found the simulations to be quite robust: we observed qualitatively similar
results under very different sets of parameters for the number and types of files
and for the size of the action space for agents. Agents with a wider choice of
actions (more options for downloads and sharing) achieve higher payoffs, but the
results remain quantitatively the same. As an example, two runs of the experi-
ment described above, with agents given 9 and 35 actions in their strategy spaces,
produced essentially the same result (Fig. 2). Finally, we studied the influence
of risk aversion on agent’s behavior in the micro-payment scheme (Fig. 3). We
plot the number of files shared in the system as a function of A, agents’ value
for money. As A decreases, agents become more risk-averse. We observed that
risk-averse agents tend to cut their spending and scale down their contributions
to the system because of their uncertainty about how many other agents will
download their shared files.



Figure 3: Risk-aversion in micro-
payment mechanism.
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Figure 2: Files shared as a function of
the proportion of altruistic agents.
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7 Conclusion

The free-rider problem is a real issue for P2P systems, and is likely to become
even more important in commercial systems. We have proposed a simple game
theoretic model of agent behavior in centralized P2P systems and shown that
our model predicts free riding in the original Napster mechanism. We analyzed
several different payment mechanisms designed to encourage file sharing in P2P
systems. Finally, we have presented experimental results supporting our theo-
retical analysis.
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